Hideyuki Ishi

Date début de publication
Date fin de publication
French

HIDEYUKI ISHI est un éminent mathématicien japonais, professeur à l'Université de Nagoya, spécialiste de l'analyse harmonique sur les cônes convexes, des groupes de Lie et des algèbres(de Jordan, de Vinberg, $j$-algèbres) liées à ces cônes ainsi que de la théorie de représentations sur ces structures.

Il collabore avec Piotr Graczyk depuis 2010, sur les applications de son domaine dans les statistiques mathématiques sur les matrices, et surtout pour les lois de Wishart, les analogues matriciels des lois $\chi^2$. Cette collaboration a apporté la publication mentionnée ci-dessous.

Nous travaillons actuellement sur les matrices de Wishart sur les cones liés aux graphs de type A_n et 3 pré-publications sont en cours de préparation:

[GIM] P. Graczyk, H. Ishi, S. Mamane, Riesz and Wishart distributions on the cones related to A_n graphs, preprint(2016), 54p.
[GIMO] P. Graczyk, H. Ishi, S. Mamane, H. Ochiai, ON LETAC-MASSAM CONJECTURE, preprint(2016), 12p.
[GIK] P. Graczyk, H. Ishi, B. Kolodziejek, Variance Function of Wishart Exponential Families on Homogeneous Cones, preprint(2016), 10p.

Nous voudrions continuer, de façon intensive, notre collaboration avec H.Ishi. Notre but sera de rechercher une théorie analytique et statistique universelle des matrices aléatoires de Wishart sur les cônes résultant des modèles graphiques, une branche moderne et importante des statistiques mathématiques. Nous envisageons d'exploiter l'approche via les applications quadratiques, introduite et développée dans [GI].

L'article [GIM], en préparation, est consacré à la classe très importante des cônes graphiques non-homogènes, les cônes liés aux graphes A_n. Les articles [GIMO] et [GIK] traitent les thèmes importants en statistiques multivariées: la classification des toutes les lois de type Wishart et leur fonction de variance.

L'objectif principal du séjour de H. Ishi au LAREMA à Angers sera de terminer la rédaction de ces travaux.

Date début de l'évènement
Date de fin l'évènement
Support
Parrain
lien plus
Plus ....

Benjamin Collas

Date début de publication
Date fin de publication
French

Après avoir caractérisé l'action du groupe de Galois de Q sur l'inertie champêtre cyclique des espaces de modules de courbes pointées (cf. les articles [1] et [2]), nous souhaitons maintenant procéder à une étude semblable pour des groupes d'inertie non cycliques (abéliens ? résolubles ? ...). Afin d'initier cette recherche, je souhaite inviter Benjamin Collas (postdoc à Bayreuth) au Mans pendant une semaine.

[1] B. Collas & S. Maugeais, Composantes irréductibles de lieux spéciaux d'espaces de modules de courbes, action galoisienne en genre quelconque, Annales de l'Institut Fourier, 2014 [2] B. Collas & S. Maugeais, On Galois Action on Stack Inertia of Moduli Spaces of Curves, 2014 (25 pages, soumis).

Date début de l'évènement
Date de fin l'évènement
Support
lien plus
Plus ....

Oleg Chernoyarov

Date début de publication
Date fin de publication
French

Oleg Chernoyarov is professor of Moscow Power Institute and works in statistical radiophysics. The goal of his visit is to continue the cooperation started 6 years ago in the field of detection and estimation of signals observed in different noises. It is supposed to study stochastic models related with GPS-localization and to describe the errors of estimation in the case of corresponding hidden Markov models .

Date début de l'évènement
Date de fin l'évènement
Support
lien plus
Plus ....

Hisaaki Endo

Date début de publication
Date fin de publication
French

Hisaaki Endo est un expert dans la topologie des variétés de dimension 4, en particulier dans la théorie des fibrations de Lefschetz et ses relations avec le mapping class group.

La collaboration de H. Endo et A. Pajitnov porte sur la théorie de Morse-Novikov pour les variétés de dimension 4, ainsi que sur les variétés de Inoue généralisées, introduites récemment dans nos prépublications.

Date début de l'évènement
Date de fin l'évènement
Support
Parrain
lien plus
Plus ....

Martin Wolf

Date début de publication
Date fin de publication
French

Martin Wolf works in the Department of Mathematics at the University of Surrey since 2011. He is a member of the « Fields, Strings, and Geometry Group ».

He has got a PhD in Mathematical Physics from the Leibniz Universität Hannover. He holds also a Diplom (MSc by research) and a Vordiplom (BSc) in Physics both of which from the Technische Universitaet Dresden.

Prior to his appointment in Surrey, he was a Senior Research Fellow and College Tutor at the Wolfson College in Cambridge, an STFC Research Fellow at the University of Cambridge, and a Research Associate at the Imperial College London. His current research ranges from formal areas in mathematics to applied areas in theoretical/mathematical physics all of which centre around geometry:
- Twistor Geometry and Applications to Differential Geometry
- Higher Gauge Theory and Category Theory, and Membranes in String and M-Theory
- Integrability and Hidden Symmetries in String and Gauge Theory
- String Theory/Gauge Theory Dualities
- Instantons and Solitons
- Supergravity Theories
- Geometry, Monge-Ampere Structures, and Fluid Dynamics

For full details, please visit Dr Wolf's home page
http://personal.maths.surrey.ac.uk/st/M.Wolf/

He has a collaborating with Prof V Roubtsov for a couple of years. Dr J McOrist (Surrey), Prof V Roubtsov, Prof I Roulstone (Surrey), and Dr M Wolf are currently working on a project dealing with Monge-Ampere structures in fluid dynamics. In particular, we combine ideas from geometry such as complex differential geometry, higher (categorified) differential geometry, and twistor geometry to unravel the geometric properties of Monge-Ampere type equations arising in the study of the Navier-Stokes equation. Ultimately, we would like to understand how the fluid dynamics is governed by the underlying geomety. The purpose of Dr Wolf's visit is to discuss and make further progress on this project.

Date début de l'évènement
Date de fin l'évènement
Support
lien plus
Plus ....

Alexander Veretennikov

Date début de publication
Date fin de publication
French

Alexander Veretennikov est professeur de mathématiques à l'Université de Leeds (UK). Il est un probabiliste et statisticien, son domaine d’expertise contient les équations différentielles stochastiques et approximations ; processus de Markov, estimations paramétriques, grandes déviations. Il est un expert très reconnu à l’échelle internationale dans le domaine du filtrage et statistique des processus.

Lors de sa visite on va travailler sur les deux sujets ci-dessous en statistique des processus stochastiques :

  • stabilité́ d'un filtre non-linéaire optimale par rapport à des petites perturbations sur les paramètres du modèle ;
  • stabilité d’un filtre optimal par rapport aux données initiales erronées perturbées par les bruits fractionnaires.
Date début de l'évènement
Date de fin l'évènement
Support
Parrain
lien plus
Plus ....

Journées réelles du Centre Henri Lebesgue

Date début de publication
Date fin de publication
French

The next meeting of the seminar series “Journées réelles du Centre Henri Lebesgue” will take place at Laboratoire de Mathématiques Jean Leray in Nantes, on from 25th to 26th of June 2019.

The speakers will be:
* Alex Degtyarev (Bilkent University)
* Olivier Le Gal (Université de Savoie)
* Matilde Manzaroli (Université de Nantes)
* Nermin Salepci (Université de Lyon 1)
* Florent Schaffhauser (Université de Strasbourg/Los Andes University)

https://www.lebesgue.fr/fr/content/seminars-journee%20reelle .

Date début de l'évènement
Date de fin l'évènement
Support
lien plus
Plus ....

Willemn van Zuijlen

Date début de publication
Date fin de publication
French

Nous travaillons sur le modèle d'une marche aléatoires faiblement auto-évitante plongée dans un potentiel à queue lourde. Nous considérons donc une marche aléatoire simple sur le réseau Z^d à temps continu. Cette marche est soumise à deux effets antagonistes. Elle est d'une part faiblement auto-évitante, ce qui signifie qu'elle reçoit une pénalité énergétique à chaque fois qu'elle retourne en un site qu'elle a déjà visité. Ce mécanisme induit une auto-répulsion de la marche et va augmenter sa dispersion. D'autre part, la marche interagit avec son environnement qui est constitué d'un champs de variables aléatoires positives indépendantes, identiquement distribuées et localisées en chacun des sites de Z^d. Ces variables aléatoires sont à queues lourdes, ce qui signifie qu'un petit nombre parmi elles ont des valeurs beaucoup plus grandes que toutes les autres. A chaque fois que notre marche aléatoire visite un site de Z^d, elle se voit attribuer un prix énergétique égal à la valeur de la variables située sur ce site. Ce second mécanisme a clairement un effet antagoniste au précédent. En effet, pour maximiser sa récompense énergétique la marche va se concentrer sur les sites à fort potentiel ce qui restreindra fortement sa dispersion. De cette compétition, nait l'espoir d'observer de nouveaux phénomènes de localisation partielle d'une marche aléatoire.

Date début de l'évènement
Date de fin l'évènement
Support
lien plus
Plus ....

Wolgang Koenig

Date début de publication
Date fin de publication
French

Nous travaillons sur le modèle d'une marche aléatoires faiblement auto-évitante plongée dans un potentiel à queue lourde. Nous considérons donc une marche aléatoire simple sur le réseau Z^d à temps continu. Cette marche est soumise à deux effets antagonistes. Elle est d'une part faiblement auto-évitante, ce qui signifie qu'elle reçoit une pénalité énergétique à chaque fois qu'elle retourne en un site qu'elle a déjà visité. Ce mécanisme induit une auto-répulsion de la marche et va augmenter sa dispersion. D'autre part, la marche interagit avec son environnement qui est constitué d'un champs de variables aléatoires positives indépendantes, identiquement distribuées et localisées en chacun des sites de Z^d. Ces variables aléatoires sont à queues lourdes, ce qui signifie qu'un petit nombre parmi elles ont des valeurs beaucoup plus grandes que toutes les autres. A chaque fois que notre marche aléatoire visite un site de Z^d, elle se voit attribuer un prix énergétique égal à la valeur de la variables située sur ce site. Ce second mécanisme a clairement un effet antagoniste au précédent. En effet, pour maximiser sa récompense énergétique la marche va se concentrer sur les sites à fort potentiel ce qui restreindra fortement sa dispersion. De cette compétition, nait l'espoir d'observer de nouveaux phénomènes de localisation partielle d'une marche aléatoire.

Date début de l'évènement
Date de fin l'évènement
Support
lien plus
Plus ....

Atelier d'analyse harmonique

Date début de publication
Date fin de publication
French

Du 27 au 30 Août 2019, nous organisons sur le campus de l'Université de Nantes à Saint-Nazaire, le workshop final du programme de MasterClass "Atelier d'Analyse Harmonique" 2019 https://www.math.sciences.univ-nantes.fr/aah2019/Home . Lors de celui-ci, une quinzaine d'étudiants (Etudiants de Master, Doctorants et Post-doctorants) seront réunis. Les étudiants de master et doctorants présenteront le travail qu'ils auront fait sur un petit sujet original de recherche qui leur a été attribué en Mai 2019. Cette rencontre permettra de créer des contacts parmi et avec la future génération en Analyse Harmonique. Cela leur permettra aussi d'avoir une première opportunité d'expliquer leur travail en public, ainsi que de discuter entre eux sur leur intérêts et travaux.

Date début de l'évènement
Date de fin l'évènement
Support
lien plus
Plus ....